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Abstract 

This paper investigates the application of the Laplace transform method in solving fractional differential equations. It 

establishes sufficient conditions under which the Laplace transform provides a rational approach to these problems. 

Key definitions and properties of fractional calculus, including the Riemann-Liouville and Caputo fractional 

derivatives, are discussed. Several lemmas are proved to facilitate the computation of inverse Laplace transforms 

involving fractional operators. The effectiveness of the method is demonstrated through examples of solving linear 

fractional differential equations with exact solutions. The study concludes that while the Laplace transform is well-

suited for fractional differential equations with constant coefficients, its applicability is limited by the nature of the 

forcing terms. 

 

Keywords: Laplace transform, Riemann- Liouville fractional derivative Caputo fractional derivative, Fractional 

differential equations. 

 

Introduction  

 This paper deals with the rationality of Laplace transform for solving the fractional differential equation. The 

main benefit of fractional derivatives over integer-order derivatives is that they can describe the memory and heredity 

properties of various materials. Differential equations of arbitrary (non integer) order are known as fractional 

differential equations. Because fractional differential equations have so many uses in science and engineering, they 

have garnered a lot of attention lately. See the books of Podlubny [1], and the paper of Ahmad and Sivasundaram [4]. 

 

Preliminaries 

 We provide some basic definitions,lemma and properties of the theory of fractional calculus that are further us

ed in this article. 

Definition 1.1 

The Laplace transform 𝐹(𝑠) is defined as a function 𝑓(𝑥) for 0 < 𝑥 < 1. 

𝐹(𝑠) = 𝐿[𝑓(𝑡)] = ∫ 𝑓(𝑥)𝑒−𝑠𝑥𝑑𝑥                                                            (1)
∞

0

 

For that 𝑠 at least for which the integral converges. 

Definition 1.2: A real function 𝑓(𝑥), 𝑥 >  0 is said to be in space 𝐶𝜇 , 𝜇 ∈ ℝ  if there is a real number 𝑝 >  𝜇, such that 

𝑓(𝑡) = 𝑡𝑝𝑓1(𝑡), where 𝑓1(𝑡) ∈ 𝐶(0, ∞), and if and only if 𝑓𝑛 ∈ 𝐶𝜇 , 𝑛 ∈ 𝑁 it is said to be in space 𝐶𝜇
𝑛 . 

Definition 1.3: The fractional integral operator of the Riemann Liouville order 𝛼 > 0, of the function 𝑓 ∈ 𝐶𝜇 , 𝜇 ≥ −1, 
is defined as  

𝑗𝛼𝑓(𝑡) =
1

𝛤(𝛼)
∫ (𝑡 − 𝑠)𝛼−1𝑓(𝑠)𝑑𝑠,     𝛼 > 0                  

𝑡

0
                                                     (2) 

Some of the operator's 𝑗𝛼,  properties required in this case are as follows: 

If 𝑓 ∈ 𝐶𝜇 , 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0 𝑎𝑛𝑑 𝛾 ≥ −1. 

(1) 𝑗𝛼𝑗𝛽𝑓(𝑡) = 𝑗𝛼+𝛽𝑓(𝑡) 
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(2) 𝑗𝛼𝑡𝛾 =
𝛤(𝛾+1)

𝛤(𝛾+𝛼+1)
𝑡𝛼+𝛾                                                                                                     (3) 

Definition 1.4: The Caputo fractional derivative of 𝑓 (𝑡) is defined as   

𝐷𝛼𝑓(𝑡) = 𝑗𝑚−𝛼𝐷𝑚𝑓(𝑡)                                                                                           (4) 

For 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ ℕ, 𝑡 > 0 𝑎𝑛𝑑 𝑓 ∈ 𝐶−1
𝑚 . 

Caputo fractional derivative calculates a common derivative first, followed by a fractional integral to achieve the desir

ed fractional derivative order. 

The Riemann-Liouville fractional integral operator is a linear operation, similar to the integration of the integer-order: 

𝑗𝛼 (∑ 𝑐𝑖 𝑓𝑖(𝑡)     

𝑛

𝑖=1

) = ∑ 𝑐𝑖𝑗𝛼 𝑓𝑖(𝑡)                                                                              (5) 

𝑛

𝑖=1

 

Where {𝑐𝑖}𝑖=1
𝑛  are constants. 

Lemma 1 The Riemann-Liouville fractional integral operator Laplace transformation of order α > 0 can be obtained 

as: 

𝐿[𝑗𝛼𝑓(𝑥)] =
𝐹(𝑠)

𝑠𝛼  

Proof: 

The Riemann-Liouville fractional integral operator Laplace transformation of order α > 0 can be obtained as: 

𝐿[𝑗𝛼𝑓(𝑥)] = 𝐿 [
1

𝛤(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡

𝑥

0

] 

=
1

𝛤(𝛼)
𝐹(𝑠)𝐺(𝑠) 

Where  

𝐺(𝑠) = 𝐿[𝑥𝛼−1] =
𝛤(𝛼)

𝑠𝛼  

Lemma 2 It is possible to obtain the Laplace transformation of Caputo fractional derivative for 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈
ℕ, in the form of: 

𝐿[𝐷𝛼𝑓(𝑥)] =
𝑠𝑚𝐹(𝑠) − 𝑠𝑛−1𝑓(0) − 𝑠𝑚−2𝑓′(0) − ⋯ … … … … … . −𝑓𝑚−1(0)

𝑠𝑚−𝛼     

Proof:  

The Caputo fractional derivative Laplace transformation of order 𝛼 > 0 is: 

𝐿[𝐷𝛼𝑓(𝑥)] = 𝐿[𝑗𝑚−𝛼𝑓𝑚(𝑥)] = 𝐿 [
𝑓𝑚(𝑥)

𝑠𝑚−𝛼 ]  

Use equation (.3). Now we can convert fractional differential equations into algebraic equations and then we can 

obtain the unknown Laplace function F(s) by solving these algebraic equations. 

Inverse Laplace transform  

The 𝑓(𝑥) function in (1) is called the 𝐹(𝑠) inverse Laplace transform and is denoted in the paper as 𝑓(𝑥) =
 𝐿−1[𝐹(𝑠)]. in practice, for example, when you use the Laplace transform to solve a differential equation, you have to 

invert the Laplace transform at some point by finding the function 𝑓(𝑥) that corresponds to certain defined 𝐹(𝑠). 
The F(s) transformation of the Inverse Laplace is defined as: 

𝑓(𝑥) = 𝐿−1[𝐹(𝑠)] =
1

2𝜋𝑖
log 𝑇→∞ ∫ 𝑒𝑠𝑥𝐹(𝑠)𝑑𝑠

𝜎+𝑇

𝜎−𝑖𝑇

 

Where 𝜎 is sufficiently large to describe 𝐹(𝑠) for the actual part of 𝑠 ≥ 𝜎, surprisingly, this formula is not really 

useful. Consequently, some useful function 𝑓(𝑥) from their Laplace transform is obtained in this section. In the first, 

we define the most important special functions used in fractional calculus, the functions of Mittag-Leffler and the 

generalized functions of Mittag-Leffler. 

For 𝛼, 𝛽 > 0 𝑎𝑛𝑑 𝑧 ∈ 𝕔 

𝐸𝛼(𝑧) = ∑
𝑧𝑛

𝛤(𝑛𝛼 + 1)

∞

𝑛=0
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𝐸𝛼,𝛽(𝑧) = ∑
𝑧𝑛

𝛤(𝑛𝛼 + 𝛽)

∞

𝑛=0

 

Now we're proving some Lemmas that are useful in finding the 𝑓(𝑥) function from its transform Laplace. 

Lemma 3 we have the following inverse equation for 𝛼,  𝛽 >  0, 𝑎 ∈ ℝ  𝑎𝑛𝑑 𝑠 𝛼 > |𝑎|.   

𝐿−1 [
𝑠𝛼−𝛽

 𝑠 𝛼 + 𝑎
] = 𝑥𝛽−1𝐸𝛼,𝛽(−𝑎𝑥𝛼) 

Proof:    𝑠
𝛼−𝛽

 𝑠 𝛼 + 𝑎⁄  in series expansion it can be written as  

𝑠𝛼−𝛽

 𝑠 𝛼 + 𝑎
=

1

𝑠𝛽

1

1 +
𝑎

 𝑠 𝛼
=

1

𝑠𝛽
∑(

−𝑎

 𝑠 𝛼
)𝑛  

∞

𝑛=0

  

= ∑
(−𝑎)𝑛

𝑠𝑛𝛼+𝛽
 

∞

𝑛=0

 

The inverse transformation of the Laplace function above is 

∑
(−𝑎)𝑛𝑥𝑛𝛼+𝛽−1

𝛤(𝑛𝛼 + 𝛽)
= 𝑥𝛽−1 ∑

(−𝑎𝑥𝛼)𝑛

𝛤(𝑛𝛼 + 𝛽)
 

∞

𝑛=0

 

∞

𝑛=0

 

= 𝑥𝛽−1𝐸𝛼,𝛽(−𝑎𝑥𝛼)𝑛 

Lemma 4 for 𝛼 ≥  𝛽 >  0, 𝑎 ∈ ℝ  𝑎𝑛𝑑 𝑠 𝛼−𝛽 > |𝑎|.then  

𝐿−1 [
1

(𝑠𝛼 + 𝑎𝑠𝛽)𝑛+1
] = 𝑥𝛼(𝑛+1)−1 ∑

(−𝑎)𝑘 (𝑛+𝑘
𝑘

)

𝛤(𝑘(𝛼 − 𝛽) + 𝑛(𝛼 + 1))
𝑥𝑘(𝛼−𝛽) 

∞

𝑛=0

 

 

Proof: 

Using the expansion series of (1 + 𝑥)−𝑛−1  

1

(1 + 𝑥)𝑛+1 = ∑ (
𝑛 + 𝑘

𝑘
) (−𝑥)𝑘  

∞

𝑛=0

 

We get  
1

(𝑠𝛼 + 𝑎𝑠𝛽)𝑛+1
=

1

(𝑠𝛼)𝑛+1

1

(1 +
𝛼

𝑠𝛼−𝛽)
 

=
1

(𝑠𝛼)𝑛+1 ∑ (
𝑛 + 𝑘

𝑘
) (

−𝑎

𝑠𝛼−𝛽
)

𝑘

 

∞

𝑛=0

 

The Lemma will prove to be the inverse Laplace transforms of the above function. 

Lemma 5 for 𝛼 ≥  𝛽 , 𝛼 > 𝛾, 𝑎 ∈ ℝ ,  𝑠 𝛼−𝛽 > |𝑎|𝑎𝑛𝑑 | 𝑠 𝛼 + 𝑎 𝑠 𝛽| > |𝑏| then 

𝐿−1 [
𝑠𝛾

𝑠𝛼 + 𝑎𝑠𝛽 + 𝑏
] = 𝑥𝛼−𝛾−1 ∑ ∑

(−𝑏)𝑛(−𝑎)𝑘 (𝑛+𝑘
𝑘

)

𝛤(𝑘(𝛼 − 𝛽) + (𝑛 + 1)𝛼 − 𝛾)

∞

𝑘=0

𝑥𝑘(𝛼−𝛽)+𝑛𝛼 

∞

𝑛=0

 

Proof: 𝑠
𝛾

𝑠𝛼 + 𝑎𝑠𝛽 + 𝑏
⁄  in series expansion it can be written as 

𝑠𝛾

𝑠𝛼 + 𝑎𝑠𝛽 + 𝑏
=

𝑠𝛾

𝑠𝛼 + 𝑎𝑠𝛽

1

1 +
𝑏

𝑠𝛼 + 𝑎𝑠𝛽

=
1

𝑠𝛽
∑

𝑠𝛾(−𝑏)𝑛

(𝑠𝛼 + 𝑎𝑠𝛽)𝑛+1
 

∞

𝑛=0

  

Now it is possible to prove the Lemma by using Lemma 4. 

Applications to fractional differential equations 

This section applies the method described in the paper and provides some linear fractional differential equations with 

an exact solution. 
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Example 1: For the inhomogeneous Bagley-Torvik equation, we consider the following initial value question as to the 

first example. 

𝐷2𝑦(𝑥) + 𝐷
3
2𝑦(𝑥) + 𝑦(𝑥) = 1 + 𝑥                                         (6) 

𝑦(0) = 𝑦′(0) = 1 

Taking Laplace transform on both sides of equation (6), we get 

𝑠2𝐹(𝑠) − 𝑠𝑦(0) − 𝑦′(0) +
𝑠2𝐹(𝑠) − 𝑠𝑦(0) − 𝑦′(0)

𝑠
1
2

+ 𝐹(𝑠) =
1

𝑠
+

1

𝑠2 

𝑠2𝐹(𝑠) − 𝑠 − 1 +
𝑠2𝐹(𝑠) − 𝑠 − 1

𝑠
1
2

+ 𝐹(𝑠) =
1

𝑠
+

1

𝑠2 

𝐹(𝑠) (𝑠2 + 𝑠
3
2 + 1) = (

1

𝑠
+

1

𝑠2) (𝑠2 + 𝑠
3
2 + 1) 

𝐹(𝑠) = (
1

𝑠
+

1

𝑠2) 

The exact solution of this problem can be obtained using the inverse Laplace transform 𝑦(𝑥) = 1 +  𝑥. 
Example 2: Our second example is the linear equation inhomogeneous. 

𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) =
2𝑥2−𝛼

𝛤(3 − 𝛼)
−

𝑥1−𝛼

𝛤(2 − 𝛼)
+ 𝑥2 − 𝑥                           (7)     

𝑦(0) = 0,     0 < 𝛼 ≤ 1 

By using Laplace transform 𝐹(𝑠) can be obtained as  
𝑠𝐹(𝑠) − 𝑦(0)

𝑠1−𝛼 =
2

𝑠3−𝛼 −
1

𝑠2−𝛼 − 𝐹(𝑠) +
2

𝑠3 −
1

𝑠2 

𝐹(𝑠)(𝑠𝛼 + 1) = 2
𝑠𝛼+1

𝑠3 −
𝑠𝛼+1

𝑠2  

𝐹(𝑠) =
2

𝑠3 −
1

𝑠2 

Using the inverse Laplace transform 𝑦(𝑥) =  𝑥2 −  𝑥 is then obtained. 

Examples 3 consider the following initial value linear problem. 

𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) = 0                                                            (8)       

Only 𝛼 >  1 is the second initial condition. 

𝐿 [ 𝐷𝛼𝑓(𝑥) ] Is obtained in two cases of 𝛼. 
1. If 𝛼 < 1 

𝐿 [ 𝐷𝛼𝑓(𝑥)] =
𝑠2𝐹(𝑠) − 𝑠

𝑠2−𝛼 =
𝑠𝐹(𝑠) − 1

𝑠1−𝛼  

2. If 𝛼 > 1 

𝐿 [ 𝐷𝛼𝑓(𝑥)] =
𝑠𝐹(𝑠) − 1

𝑠1−𝛼  

Which are same. Now Laplace transform of F(s) is obtained as 
𝑠𝐹(𝑠) − 1

𝑠1−𝛼 + 𝐹(𝑠) = 0 

𝐹(𝑠) =
𝑠𝛼−1

1 + 𝑠𝛼  

The exact solution to this problem can be obtained using lemma 3 as: 

𝑦(𝑥) = 𝐸𝛼(−𝑥)𝛼 

 

CONCLUSION 

 In this paper, The Laplace transform method is suitable for constant coefficient fractional differential 

equations, but it demands for forcing terms, so not every constant coefficient fractional differential equation can be 
solved by the Laplace transform method. 
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